GALILEO
HIGH ACCURACY SERVICE DAYS
Precise Point Positioning with High Accuracy Service for Autonomous Vehicles

Patrick Henkel
Autonomous Driving

Strong need for precise and reliable positioning and environment detection.
Positioning System of ANavS

Multi-Sensor RTK/ PPP Module

- 3 integrated Multi-frequency, Multi-GNSS receivers, available in various configurations with chips from different OEMs
- 1 integrated industrial-grade MEMS-IMU, available in various configurations with different IMUs from low to high bias stability
- 1 integrated CAN bus interface for reading wheel and steering measurements
- Integrated processor with ANavS GNSS/ INS/ odometry tightly coupled RTK/ PPP
- Various interfaces: Ethernet, CAN, USB, WiFi, GSM/ LTE
PPP with HAS – main components

Pre-processing
- Observation, Navigation and Correction data
- Determination of HAS satellite positions, velocities, clock offsets and clock drifts
- OS PVT
- Outlier detection and cycle slip correction
- Determination of corrected satellite-satellite single differences (SU) of measurements

Iterative Kalman filter
- State initialization
 - Determination of normalized sat.-rec. direction vectors and geometry matrix
- State prediction
 - Calculation + application of SD HAS corrections
- State update
 - Last iteration? Yes
 - Initialization of iono and ambiguity states of newly tracked satellites
 - Application of site displacement corrections (Earth tides, polar motion, ocean loading)
 - Last iteration? No
 - Alternating state predictions and updates (one loop per epoch)

Solution output

Iterative state update with Ambiguity Fixing
- Determination of subset of ambiguities to fix
- (Partial) Integer Ambiguity Fixing
- Tests, state adjustment, and residual check
PPP with HAS and Sensor Fusion

Sensor raw data

- GNSS receivers: carrier phases, pseudoranges, Doppler measurements
- Inertial sensor: accelerations, angular rates
- Vehicle Information (e.g. wheel speed)
- Local position information
- Camera: mono/ stereo images
- Lidar/ radar: 3D point clouds

PPP/ RTK corrections

Kalman filter

- State prediction: position, velocity, attitude, angular rates, ambiguities, IMU biases
- State update: position, velocity, attitude, angular rates, ambiguities, IMU biases

Function monitoring

- Consistency checks based on separate position solutions
- status of sensor data
- position information including accuracy
- Geo-referenced 3D map with semantic information (e.g., localized traffic lights, traffic signs, distance signs, etc.)
Our reference solution for validating PPP: GNSS RTK + INS + Odometry

Test drive in challenging environment in Munich, Germany.

white: ANavS
blue: OXTS
Our reference solution for validating PPP: GNSS RTK + INS + Odometry

white: ANavS
blue: OXTS
Our reference solution for validating PPP: GNSS RTK + INS + Odometry

Tunnel Petuelring, Munich (length: ca. 1.5 km)

white: ANavS
blue: OXTS
Our reference solution for validating PPP: GNSS RTK + INS + Odometry

white: ANavS
blue: OXTS
Our reference solution for validating PPP: GNSS RTK + INS + Odometry

white: ANavS
blue: OXTS
PPP Accuracy Analysis
PPP Repeatability Analysis
PPP Convergence Analysis

Position offset of GPS+GAL-PPP solution to RTK reference position on the 10th of March 2022

Horizontal
Vertical
Hor required
Ver required

Position [m]

time [min]
Dynamic Performance
Dynamic Performance
The Reference System of ANavS for Precise Positioning in Challenging Environments

3D Lidar:
- measurement range: 100 m
- measurement accuracy: +/- 3 cm
- Field of view (horizontal): 360°
- Field of view (vertical): 30°

Multi-frequency GNSS antenna

FLIR Grasshopper 3:
- 163 frames per second
- 1920 x 1200 resolution
- global shutter

IMU with 0.8 deg/h bias stability

6-core Nvidia ARM: GPU
with 384 Nvidia Cuda cores and 48 tensor cores

Multi-frequency GNSS antenna

Multi-Sensor Platform for Precise Positioning in Challenging Environments

Customer benefits:

➢ Precise positioning, mapping and object detection in a single device

➢ Very easy and fast installation and de-installation

➢ No need for individual cabling of each sensor

➢ No need for manual and error-prone determination of lever arms
Multi-Sensor Platform for Precise Positioning in Challenging Environments
Multi-Sensor Platform for Precise Positioning in Challenging Environments
Multi-Sensor Platform for Precise Positioning in Challenging Environments

Offset of Lidar-only SLAM w.r.t. RTK position solution
Multi-Sensor Platform for Precise Positioning in Challenging Environments
Multi-Sensor Platform for Precise Positioning in Challenging Environments

Comparison Between MSRTK and LiDAR based Positioning Solution

Location: Hornbach Indoor Parking Space, Munich, Germany
Speed: ~20-30 kmph
Driving scenario: Transition between Indoor and Outdoor environment

View 1: First person view captured by FLIR camera
View 2: Bird-Eye-View of VLP-16 LiDAR SLAM
View 3: AMeWS GUI app showing satellite sky plot and real time positioning solution
Multi-Sensor Platform for Precise Positioning in Challenging Environments
¡THANK YOU!

#EUSpace